IN-LINE NIR SPECTROSCOPY FOR COMPREHENSIVE PROCESS

UNDERSTANDING OF SEMI-CONTINUOUS BLENDING IN THE

CONTINUOUS PRODUCTION OF LOW-DOSE FORMULATIONS

Louis Bouckaert, Alexander De Man, Lisa De Souter, Fabian Starsich, Bernhard Meir, Chris Vervaet, Thomas De Beer, Valérie Vanhoorne

TRE OF EXCELLENCE TAINABLE PHARMACEUTICAL ENGINEERING & MANUFACTURING

EHENSIVE PROCESS BLENDING IN THE E FORMULATIONS

INTRODUCTION

- Growing market of High Potency Active Pharmaceutical Ingredients (HPAPIs)
 - ➔ increased need for low-dose formulations
- > Low-dose formulation: unit dose ≤ 2% w/w API
- Challenges in continuous manufacturing of low-dose formulations
 - Feeder fluctuations may impact blending performance
 - Start-up and shutdown losses limit use for the development of new products
 - Sensitivity issues exist for in-line PAT tools used to measure blend uniformity
 - ...

1. P. Van Arnun, Charting API Market Growth and Opportunity, Pharm. Technol. 32 (7), 58–61 (2008)

2. EMA. Guideline on process validation for finished products — Information and data to be provided in regulatory submissions (2016)

Fig. 1: Predicted future market value of High Potency APIs

Fig. 2:Semi-continuous blender (GBM 10-P, Gericke AG)

INTRODUCTION

- Blending process exists of two blending mechanisms: macromixing (convection) and micromixing (dispersion)
 - Macromixing: bulk movement of particles in the blender & most impact on blend uniformity
 - Micromixing: delumping of API particles, resulting in a small-scale random motion
 - Macro and micromixing co-occur in most mixers \bigcirc
 - Macromixing results rarely in complete homogeneous mixtures Ο
 - Micromixing is generally slower than macromixing Ο
- End-point of micromixing = end-point blending process

- Objectives of the study:
 - Direct integration of an **in-line PAT tool** into the GBM 10-P Pharma mini blender (Gericke)
 - Enhancing process understanding of semi-continuous 2.
 - 3. Evaluating the **impact of process settings** on the blending time required to achieve homogeneity

(top) and convective mixing (bottom)

Formulation	
Caffeine anhydrous powder	2% _{w/w}
Lactose (SuperTab 11SD)	98% _{w/w}

Fig. 2: Semi-continuous blender (GBM 10-P, Gericke AG)

Integration ti

Averaging n

Measureme

* Without SentroPAT interface lagging

Settings SentroPAT FO

ime	5 ms
umber	40*
nt interval	±350 ms

Fig. 4: SentroPAT FO with SentroProbe DR LS (Sentronic)

- Full factorial screening design
 - $2\%_{w/w}$ drug load
 - Included factors:
 - \circ Impeller speed (60 100 140 RPM)
 - Probe location (A B C)
 - Fill level (5 7.5 10L)
 - Defined **responses**:
 - Spectral noise
 - End-point of macromixing and micromixing
 - Spectral analysis methods:
 - Partial Least Squares (PLS)
 - Moving Block Standard Deviation (MBSD)

- > A run was blended for 6 minutes while NIR spectra was collected
- > 10 powder samples were taken straight from the blender for offline validation

Exp. No	Impeller speed (rpm)	Probe location	Fill level (L)
1	60	А	5
2	140	А	5
3	60	В	5
4	140	В	5
5	60	С	5
6	140	С	5
7	60	A	7.5
8	140	A	7.5
9	60	В	7.5
10	140	В	7.5
11	60	С	7.5
12	140	С	7.5
13	60	A	10
14	140	A	10
15	60	В	10
16	140	В	10
17	60	С	10
18	140	С	10
19	100	A	7.5
20	100	A	7.5
21	100	В	7.5
22	100	В	7.5
23	100	С	7.5
24	100	С	7.5

Table 1: Full factorial screening design

Partial Least Squares (PLS) Α.

- Calibration data:
 - $0.5 1.5 2.5 3.5 4.5\%_{w/w}$
 - Blender was running for 6 min \rightarrow final 2 minutes of spectra were used (i.e. homogeneous powder blend) ۲
 - Spectral preprocessing: 2nd Derivative (27 points in each submodel) + SNV •
- Model training: \succ
 - Partial Least Squares regression ٠
 - Group Kfold CV (groups = # LCs = 5) •
 - All spectra of one LC (%) are seen as a group during CV 0
 - # LVs based upon change in RMSEcv ٠

Advantage	Limitation
Real-time predictions of API concentration	Equipment process settings may have impact on the predictions
	Calibration set required for each because the set of

e a significant

blender setting?

B. Moving block standard deviation (MBSD)

- Calculating the RSD (%) of spectral intensities at 1670nm (i.e. main wavelength of caffeine) across a block of consecutive spectra \triangleright
 - Block size of 3 spectra ٠
- During each MBSD calculation: a new spectrum is incorporated while the oldest one is discarded \succ
- Over time, MBSD values will stabilize and fall below predetermined threshold
 - Threshold = max. MBSD value calculated during the final two minutes of blending •

Estimating effective sample volume:

According to the FDA: effective sample size should be comparable to the unit dose of the final drug product⁴

$$M_{spectrum} = \rho H \pi r \left[r + 4(l+r) * \frac{\omega * t_{acq}}{60 * 10^3} \right] * Avg. No. * \frac{3 * \omega * t_{acq}}{sin^{-1}(\frac{r}{l}) * 10^3}$$

- assumptions:
 - ρ: actual density: between bulk density and tapped density Ο
 - H: 0.28mm (depends on density of the powder) Ο
 - r: radius of the probe spot size Ο
 - I: distance between probe position and center of the blender Ο

The second second second	Sample volume (mg)	
impeter speed (rpm)	Bulk density	Tapped density
60	91	109
100	188	226
140	315	378

Table 3: Effective sample volume calculated for three impeller speeds

4. US Food and Drug Administration . Development and submission of near infrared analytical procedures guidance for industry. Tech. Rep.; U.S.Food and Drug Administration; 2021. URL: https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs

1. SELECTION OF PROCESS SETTINGS FOR PLS MODEL DEVELOPMENT

- > Evaluating the impact of blender settings on NIR spectra by **PCA**
 - ➔ Only mean-centering was applied as preprocessing step
 - → Final 2 minutes of each run were included
- Run 5 (5L; 60 RPM; C), run 6 (5L; 140RPM; C) and run 14 (10L; 140RPM; A) are excluded (probe was not fully covered)
- ➢ Note: PC1 describes 95% of all variability
- Loadings of PC1 are identical to raw spectra

Fig.8: Raw spectrum of run 4, 20 and 22 collected during the final twominutes of blending9

1. SELECTION OF PROCESS SETTINGS FOR PLS MODEL DEVELOPMENT

- > Evaluating the impact of blender settings on NIR spectra by **PCA**
 - → Only mean-centering was applied as preprocessing step
 - → Final 2 minutes of each run were included
- Run 5 (5L; 60 RPM; C), run 6 (5L; 140RPM; C) and run 14 (10L; 140RPM; A) are excluded (probe was not fully covered)
- > Note: PC1 describes 95% of all variability
- Loadings of PC1 are identical to raw spectra
- > With 3 PLS models: 17 out of 21 DoE runs could be predicted

Exp. No	Impeller speed (rpm)	Probe location	Fill level (L)
1	60	A	5
2	140	А	5
3	60	В	5
4	140	В	5
5	60	С	5
6	140	С	5
7	60	A	7.5
8	140	А	7.5
9	60	В	7.5
10	140	В	7.5
11	60	С	7.5
12	140	С	7.5
13	60	A	10
14	140	A	10
15	60	В	10
16	140	В	10
17	60	С	10
18	140	C	10
19	100	А	7.5
20	100	А	7.5
21	100	В	7.5
22	100	В	7.5
23	100	С	7.5
24	100	С	7.5

Table 1: Full factorial screening design

10

2.1. PLS MODEL USING BLENDER SETTINGS 7.5L-60RPM-B

- Training data \triangleright
 - Preprocessing: 2nd Derivative (window size: 27 data points) + SNV
- Model validation \triangleright
 - $2\%_{w/w}$ blend from t=0 \rightarrow 360s
 - "When is the blend homogenous?"

Fig. 9: Preprocessed spectra with 1670nm region indicated

Table 4: Results of the offline analysis		
LC(%) Mean API Content(%)		SD(%)
0.5	95.5	1.56
1.5	96.7	1.61
2.5	97.6	1.61
3.5	97.5	0.85
4.5	97.6	1.46

Fig. 10:Observed vs. Predicted of PLS model (7.5L-60rpm-B)

RESULTS AND DISCUSSION 2.2. THE ENDPOINT OF MICROMIXING USING PLS MODELING

Score contribution plot \succ

- To interpret how the X-variables (i.e. wavelength) contribute to the predicted Y-value (i.e. blend potency)
- To distinguish a peak from noise \rightarrow defining the last peak which is caused by an API agglomerate
- Peak (i.e. black arrow) vs. group of last 2min of spectra (i.e. red colored)
- Assumption: final detected API agglomerate is completely de-lumped and dispersed after the last time it was ٠ measured by the NIR probe

denotes a homogeneous powder mixture, which continues as red during the final two minutes of blending.

2.2. THE ENDPOINT OF MICROMIXING USING BLENDER SETTINGS 7.5L-60RPM-B

- Comparison between the endpoint of th PLS prediction (i.e. score contribution) and MBSD \triangleright
- Both analyzing methods result in similar endpoints \geq

Fig. 12.: Validation run of PLS model (7.5L-60RPM-B). Green coloring denotes a homogeneous powder mixture, which continues as red during the final two minutes of blending.

Fig.13 : MBSD of a validation run (i.e. 7.5L-60RPM-B). (-): Max. MBSD value observed during the final two minutes of blending

4.1. IMPACT OF PROCESS SETTINGS/PROBE LOCATION ON THE ENDPOINT OF MACROMIXING

- PLS predictions were used to evaluate the impact of process settings on the end-point of macromixing
- Endpoint of macromixing = the moment predicted blend potency values intersect with the average concentration observed during the final two minutes of blending

Fig. 22: PLS prediction of 10L – 60RPM –A

4.1. IMPACT OF PROCESS SETTINGS/PROBE LOCATION ON THE ENDPOINT OF MACROMIXING

- PLS predictions were used to evaluate the impact of process settings on the end-point of macromixing >
- Endpoint of macromixing = the moment predicted blend potency values intersect with the average concentration observed during the final two \succ minutes of blending

Fig. 23: Effect plot of macromixing. Imp: impeller speed, Fil: fill level

Fig. 24: Contour plot of the endpoint of macromixing

RESULTS OF DOE

4.1. IMPACT OF PROCESS SETTINGS/PROBE LOCATION ON THE ENDPOINT OF MICROMIXING

- Endpoint could be detected by both PLS modeling and MBSD
- To include all 21 DoE runs the MBSD-method was used*

Fig. 26: Contour plot of the endpoint of micromixing

*Run 4/5/14 excluded (probe was not fully covered)

<u>CONCLUSION</u>

- > Spectra could be measured in high quality and in real-short time using a diode arrays spectrometer
 - API signal could always be distinguished from background noise despite the low drug load
 - The effective sample size of one spectrum was comparable to the unit dose of a single tablet
- PLS and MBSD were used as spectral analysis methods:
 - PLS modeling enabled the prediction of both convective and dispersive mixing in 17 out of 21 DoE runs
 - MBSD explained only the endpoint of micromixing, but showed robustness across different blender settings
- Endpoint of macromixing:
 - Increasing fill level extended the time required to complete macromixing
 - Impeller speed had the opposite effect
- Endpoint of micromixing (=endpoint of blending process)
 - High shear mixing resulted in shorter blending times compared to low shear blending
 - Fill level only extended the blending time when a low impeller speed was applied

spectrometer ow drug load a single tablet

in 17 out of 21 DoE runs oss different blender settings

ending ied Louis Bouckaert PhD Researcher

LABORATORY OF PHARMACEUTICAL TECHNOLOGY

Е louis.bouckaert@ugent.be Т +32 478 26 03 67

- ACKNOWLEDGEMENTS

www.ugent.be

• GERICKE: Bernhard Meir, dr. F. Starsich and F. Tegel • SENTRONIC: Sebastian Sowinski • UGent: Prof. dr. T. De Beer, Prof. dr. V. Vanhoorne, Prof. C. Vervaet, A. De Man, L. De Souter

